
http://www.ebook3000.org

Java™

Fourth Edition

Nell Dale
University of Texas, Austin

Daniel T. Joyce
Villanova University

Chip Weems
University of Massachusetts,

Amherst

Javausing

Object-Oriented
Data Structures

World Headquarters

Jones & Bartlett Learning

5 Wall Street

Burlington, MA 01803

978-443-5000

info@jblearning.com

www.jblearning.com

Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact Jones & Bartlett

Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com.

Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations, professional associa-

tions, and other qualified organizations. For details and specific discount information, contact the special sales department at Jones &

Bartlett Learning via the above contact information or send an email to specialsales@jblearning.com.

Copyright © 2018 by Jones & Bartlett Learning, LLC, an Ascend Learning Company

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form, electronic or mechani-

cal, including photocopying, recording, or by any information storage and retrieval system, without written permission from the copyright

owner.

The content, statements, views, and opinions herein are the sole expression of the respective authors and not that of Jones & Bartlett Learn-

ing, LLC. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise

does not constitute or imply its endorsement or recommendation by Jones & Bartlett Learning, LLC and such reference shall not be used for

advertising or product endorsement purposes. All trademarks displayed are the trademarks of the parties noted herein. Object-Oriented Data

Structures Using Java, Fourth Edition is an independent publication and has not been authorized, sponsored, or otherwise approved by the

owners of the trademarks or service marks referenced in this product.

09820-4

Production Credits

VP, Executive Publisher: David D. Cella

Acquisitions Editor: Laura Pagluica

Editorial Assistant: Taylor Ferracane

Director of Vendor Management: Amy Rose

Marketing Manager: Amy Langlais

VP, Manufacturing and Inventory Control: Therese Connell

Composition and Project Management: S4Carlisle Publishing Services

Cover Design: Kristin E. Parker

Text Design: Scott Moden

Rights & Media Specialist: Merideth Tumasz

Media Development Editor: Shannon Sheehan

Cover Image: © Ake13bk/Shutterstock

Printing and Binding: Edwards Brothers Malloy

Cover Printing: Edwards Brothers Malloy

Library of Congress Cataloging-in-Publication Data

Names: Dale, Nell (Nell B.), author. | Joyce, Daniel T., author. | Weems,

 Chip., author.

Title: Object-oriented data structures using Java / Nell Dale, Daniel T.

 Joyce, Chip Weems.

Description: Fourth edition. | Burlington, MA : Jones & Bartlett Learning,

 [2017]

Identifiers: LCCN 2016025145 | ISBN 9781284089097 (casebound)

Subjects: LCSH: Object-oriented programming (Computer science) | Data

 structures (Computer science) | Java (Computer program language)

Classification: LCC QA76.64 .D35 2017 | DDC 005.13/3--dc23 LC record available at

https://lccn.loc.gov/2016025145

6048

Printed in the United States of America

20 19 18 17 16 10 9 8 7 6 5 4 3 2 1

http://www.jblearning.com
http://www.jblearning.com
https://lccn.loc.gov/2016025145
http://www.ebook3000.org

To Alfred G. Dale

ND

To Kathy, Tom, and Julie, thanks for the love and support

DJ

To Lisa, Charlie, and Abby, thank you . . .

CW

©
 Ake13bk/Shutterstock

Welcome	to	the	fourth	edition	of	Object-Oriented Data Structures Using Java™.	This	book	pres-

ents	the	algorithmic,	programming,	and	structuring	techniques	of	a	traditional	data	structures	

course	in	an	object-oriented	context.	You’ll	find	the	familiar	topics	of	linked	lists,	recursion,	

stacks,	queues,	collections,	indexed	lists,	trees,	maps,	priority	queues,	graphs,	sorting,	searching,	

and	complexity	analysis,	all	covered	from	an	object-oriented	point	of	view	using	Java.	We	stress	

software	engineering	principles	throughout,	including	modularization,	information	hiding,	data	

abstraction,	stepwise	refinement,	the	use	of	visual	aids,	the	analysis	of	algorithms,	and	software	

verification	methods.

To the Student

You	know	that	an	algorithm	is	a	sequence	of	unambiguous	instructions	for	solving	a	problem.	

You	can	take	a	problem	of	moderate	complexity,	design	a	small	set	of	classes/objects	that	work	

together	to	solve	the	problem,	code	the	method	algorithms	needed	to	make	the	objects	work,	and	

demonstrate	the	correctness	of	your	solution.

Algorithms	describe	actions.	These	actions	manipulate	data.	For	most	interesting	problems	

that	are	solved	using	computers,	the	structure	of	the	data	is	just	as	important	as	the	structure	

of	the	algorithms	used	to	manipulate	the	data.	Using	this	text	you	will	discover	that	the	way	

you	structure	data	affects	how	efficiently	you	can	use	the	data;	you	will	see	how	the	nature	of	

the	problem	you	are	attempting	to	solve	dictates	your	structuring	decisions;	and	you	will	learn	

about	the	data	structures	that	computer	scientists	have	developed	over	the	years	to	help	solve	

problems.

Object-Oriented Programming with Java

Our	primary	goal	is	to	present	both	the	traditional	and	modern	data	structure	topics	with	an	

emphasis	on	problem	solving	and	software	design.	Using	the	Java	programming	language	as	a	

vehicle	for	problem	solutions,	however,	presents	an	opportunity	for	students	to	expand	their	

Preface

http://www.ebook3000.org

Preface v

familiarity	with	a	modern	programming	language	and	the	object-oriented	paradigm.	As	our	data	

structure	coverage	unfolds,	we	introduce	and	use	the	appropriate	Java	constructs	that	support	our	

primary	goal.	Starting	early	and	continuing	throughout	the	text,	we	introduce	and	expand	on	the	

use	of	many	Java	features	such	as	classes,	objects,	generics,	polymorphism,	packages,	interfaces,	

library	classes,	inheritance,	exceptions,	and	threads.	We	also	use	Universal	Modeling	Language	

(UML)	class	diagrams	throughout	to	help	model	and	visualize	our	objects,	classes,	interfaces,	

applications,	and	their	interrelationships.

Features

Data Abstraction	 In	this	text	we	view	our	data	structures	from	three	different	perspectives:	

their	specification,	their	application,	and	their	implementation.	The	specification	describes	the	

logical	or	abstract	level—what the	logical	relationships	among	the	data	elements	are	and	what

operations	can	be	performed	on	the	structure.	The	application	level,	sometimes	called	the	client	

level,	is	concerned	with	how	the	data	structure	is	used	to	solve	a	problem—why the	operations	

do	what	they	do.	The	implementation	level	involves	the	coding	details—how the	structures	

and	operations	are	implemented.	In	other	words	we	treat	our	data	structures	as	abstract	data	

types	(ADTs).

Efficiency Analysis	 In	Chapter	1	we	introduce	order	of	growth	efficiency	analysis	using	a	unique	

approach	involving	the	interaction	of	two	students	playing	a	game.	Time	and	space	analysis	is	

consistently	applied	throughout	the	text,	allowing	us	to	compare	and	contrast	data	structure	

implementations	and	the	applications	that	use	them.

Recursion Treatment	 Recursion	is	introduced	early	(Chapter	3)	and	used	throughout	the	re-

mainder	of	the	text.	We	present	a	design	and	analysis	approach	to	recursion	based	on	answering	

three	simple	questions.	Answering	the	questions,	which	are	based	on	formal	inductive	reasoning,	

leads	the	programmer	to	a	solid	recursive	design	and	program.

Interesting Applications	 Eight	primary	data	structures	(stacks,	queues,	collections,	indexed	

lists,	trees,	maps,	priority	queues,	and	graphs)	are	treated	in	separate	chapters	that	include	their	

definition,	several	implementations,	and	one	or	more	interesting	applications	based	on	their	use.	

Applications	involve,	for	example,	balanced	expressions,	postfix	expressions,	image	generation	

(new!),	fractals	(new!),	queue	simulation,	card	decks	and	games	(new!),	text	analysis	(new!),	tree	

and	graph	traversals,	and	big	integers.

Robust Exercises	 We	average	more	than	40	exercises	per	chapter.	The	exercises	are	organized	by	

chapter	sections	to	make	them	easier	for	you	to	manage.	They	vary	in	level	of	difficulty,	including	

short	and	long	programming	problems	(marked	with	“programming-required”	icons—one	icon	

to	indicate	short	exercises	and	two	icons	for	projects),	the	analysis	of	algorithms,	and	problems	

to	test	students’	understanding	of	abstract	concepts.	In	this	edition	we	have	streamlined	the	

previous	exercises,	allowing	us	to	add	even	more	options	for	you	to	choose	from.	In	particular	

we	have	added	several	larger	programming	exercises	to	many	of	the	chapters.

Input/Output Options	 It	is	difficult	to	know	what	background	the	students	using	a	data	struc-

tures	text	will	have	in	Java	I/O.	To	allow	all	the	students	using	our	text	to	concentrate	on	the	

vi Preface

primary	topic	of	data	structures,	we	use	the	simplest	I/O	approach	we	can,	namely	a	command	

line	interface.	However,	to	support	those	teachers	and	students	who	prefer	to	work	with	graphi-

cal	user	interfaces	(GUIs),	we	provide	GUIs	for	many	of	our	applications.	Our	modular	approach	

to	program	design	supports	this	approach—our	applications	separate	the	user	interface	code,	

problem	solution	code,	and	ADT	implementation	code	into	separate	classes.

Concurrency Coverage	 We	are	pleased	to	be	one	of	the	only	data	structures	texts	to	address	the	

topics	of	concurrency	and	synchronization,	which	are	growing	in	importance	as	computer	systems	

move	to	using	more	cores	and	threads	to	obtain	additional	performance	with	each	new	generation.	

We	introduce	this	topic	in	Section	4.9,	“Concurrency,	Interference,	and	Synchronization,”	where	

we	start	with	the	basics	of	Java	threads,	continue	through	examples	of	thread	interference	and	

synchronization,	and	culminate	in	a	discussion	of	efficiency	concerns.

New to the Fourth Edition

This	edition	represents	a	major	revision	of	the	text’s	material,	although	the	philosophy	and	style	

that	our	loyal	adopters	have	grown	to	appreciate	remain	unchanged.	We	removed	material	we	

felt	was	redundant	or	of	lesser/outdated	importance	to	the	core	topic	of	data	structures,	added	

new	key	material,	and	reworked	much	of	the	material	that	we	kept.	Although	the	length	of	the	

textbook	was	reduced	by	about	10%,	the	coverage	of	data	structures	has	been	expanded.	We	

believe	this	new	edition	is	a	great	improvement	over	previous	editions	and	hope	you	do,	too.	

Major	changes	include:

•	 Simplified	Architecture:	We	continue	to	use	the	Java	interface	construct	to		

define	the	abstract	view	of	our	ADTs,	but	we	have	reduced	the	number	of	levels	

of	inheritance,	simplifying	the	architecture	and	making	it	easier	to	understand	

and	use.

•	 New	Chapters:	Chapter	5,	“The	Collection	ADT,”	and	Chapter	8,	“The	Map	ADT,”	are	

brand	new.	The	Collection	ADT	material	introduces	the	idea	of	a	data	structure	as	

a	repository	and	concentrates	on	storage	and	retrieval	of	data	based	on	key	attri-

butes.	The	Map	ADT	has	become	increasingly	important	with	the	rise	in	popularity	

of	scripting	languages	with	built-in	associative	arrays.

•	 New	Section:	Section	1.6,	“Comparing	Algorithms:	Order	of	Growth	Analysis,”	was	

completely	rewritten	and	features	an	introduction	to	efficiency	analysis	driven	by	

a	game	played	between	two	students,	plus	analysis	of	sequential	search,	binary	

search,	and	sequential	sort	algorithms.

•	 New	Sections:	In	response	to	reader’s	suggestions,	Chapter	3,	“Recursion,”	features	

two	new	sections:	Section	3.3,	“Recursive	Processing	of	Arrays,”	is	devoted	to	recur-

sive	processing	of	arrays	and	Section	3.4,	“Recursive	Processing	of	Linked	Lists,”	is	

devoted	to	recursive	processing	of	linked	lists.	These	new	sections	provide	practical	

examples	of	the	use	of	recursion,	before	the	reader	moves	on	to	the	less	practical	

but	nevertheless	popular	Towers	of	Hanoi	example	covered	in	Section	3.5,	“Towers.”

•	 New	Section:	Fractals!	A	fun	section	related	to	recursively	generating	fractal-based	

images	now	wraps	up	the	examples	of	Chapter	3,	“Recursion.”

http://www.ebook3000.org

Preface vii

•	 New	Sections:	We	added	“Variations”	sections	to	the	Stack,	Queue,	Collection,	List,	

Tree,	and	Map	chapters.	In	the	primary	exposition	of	each	of	these	ADTs	we	record	

design	decisions	and	specify	the	operations	to	be	supported	by	the	ADT.	We	also	

develop	or	at	least	discuss	various	implementation	approaches,	in	most	cases	high-

lighting	one	array-based	approach	and	one	reference/linked-list-based	approach.	

The	“Variations”	section	discusses	alternate	approaches	to	defining/implementing	

the	ADT	and	in	most	cases	reviews	the	ADT	counterparts	available	in	the	standard	

Java	Library.	Some	of	these	sections	also	introduce	related	ADTs,	for	example,	in	the	

“Variations”	section	of	the	Collection	chapter	we	define	and	discuss	both	the	Set	

and	Bag	ADTs.

•	 Glossary:	The	text’s	glossary	has	always	been	available	online.	With	this	edition	we	

make	it	available	as	Appendix	E.	Throughout	the	text	we	highlight	important	terms	

that	might	be	unfamiliar	to	the	student	in	green,	the	first	time	they	are	featured,	to	

indicate	that	their	definition	can	be	found	in	the	glossary.

Prerequisite Assumptions

In	this	book,	we	assume	that	readers	are	familiar	with	the	following	Java	constructs:

•	 Built-in	simple	data	types	and	the	array	type

•	 Control	structures	while,	do,	for,	if,	and	switch

•	 Creating	and	instantiating	objects

•	 Basic	user-defined	classes:

 ■ variables	and	methods

 ■ constructors,	method	parameters,	and	the	return statement

 ■ visibility	modifiers

•	 Commonly	used	Java	Library	Classes:	Integer, Math, Random, Scanner,	String,		

and	System

Chapter Content

Chapter 1 is	all	about	Getting Organized.	An	overview	of	object	orientation	stresses	mecha-

nisms	for	organizing	objects	and	classes.	The	Java	exception	handling	mechanisms,	used	to	

organize	response	to	unusual	situations,	are	introduced.	Data	structures	are	previewed	and	the	

two	fundamental	language	constructs	that	are	used	to	implement	those	structures,	the	array	

and	the	reference	(link/pointer),	are	discussed.	The	chapter	concludes	with	a	look	at	efficiency	

analysis—how	we	evaluate	and	compare	algorithms.

Chapter 2 presents	The Stack ADT.	The	concept	of	abstract	data	type	(ADT)	is	introduced.	

The	stack	is	viewed	from	three	different	levels:	the	abstract,	application,	and	implementation	

levels.	The	Java	interface	mechanism	is	used	to	support	this	three-tiered	view.	We	also	investigate	

using	generics	to	support	generally	usable	ADTs.	The	Stack	ADT	is	implemented	using	both	arrays	

and	references.	To	support	the	reference-based	approach	we	introduce	the	linked	list	structure.	

Sample	applications	include	determining	if	a	set	of	grouping	symbols	is	well	formed	and	the	

evaluation	of	postfix	expressions.

viii Preface

Chapter 3 discusses	Recursion,	showing	how	recursion	can	be	used	to	solve	programming	

problems.	A	simple	three-question	technique	is	introduced	for	verifying	the	correctness	of	re-

cursive	methods.	Sample	applications	include	array	processing,	linked	list	processing,	the	classic	

Towers	of	Hanoi,	and	fractal	generation.	A	detailed	discussion	of	how	recursion	works	shows	how	

recursion	can	be	replaced	with	iteration	and	stacks.

Chapter 4 presents	The Queue ADT.	It	is	also	first	considered	from	its	abstract	perspective,	

followed	by	a	formal	specification,	and	then	implemented	using	both	array-based	and	reference-

based	approaches.	Example	applications	include	an	interactive	test	driver,	a	palindrome	checker,	

and	simulating	a	system	of	real-world	queues.	Finally,	we	look	at	Java’s	concurrency	and	synchro-

nization	mechanisms,	explaining	issues	of	interference	and	efficiency.

Chapter 5 defines	The Collection ADT.	A	fundamental	ADT,	the	Collection,	supports	storing	

information	and	then	retrieving	it	later	based	on	its	content.	Approaches	for	comparing	objects	

for	equality	and	order	are	reviewed.	Collection	implementations	using	an	array,	a	sorted	array,	

and	a	linked	list	are	developed.	A	text	processing	application	permits	comparison	of	the	imple-

mentation	approaches	for	efficiency.	The	“Variations”	section	introduces	two	more	well-known	

ADTs:	the	Bag	and	the	Set.

Chapter 6 follows	up	with	a	more	specific	Collection	ADT,	The List ADT.	In	fact,	the	follow	ing	

two	chapters	also	develop	Collection	ADTs.	Iteration	is	introduced	here	and	the	use	of	anonymous	

inner	classes	to	provide	iterators	is	presented.	As	with	the	Collection	ADT	we	develop	array,	sorted	

array,	and	linked-list–based	implementations.	The	“Variations”	section	includes	an	example	of	

how	to	“implement”	a	linked	list	within	an	array.	Applications	include	a	card	deck	model	plus	

some	card	games,	and	a	Big	Integer	class.	This	latter	application	demonstrates	how	we	sometimes	

design	specialized	ADTs	for	specific	problems.

Chapter 7 develops	The Binary Search Tree ADT.	It	requires	most	of	the	chapter	just	to	

design	and	create	our	reference-based	implementation	of	this	relatively	complex	structure.	The	

chapter	also	discusses	trees	in	general	(including	breadth-first	and	depth-first	searching)	and	the	

problem	of	balancing	a	binary	search	tree.	A	wide	variety	of	special-purpose	and	self-balancing	

trees	are	introduced	in	the	“Variations”	section.

Chapter 8 presents	The Map ADT,	also	known	as	a	symbol	table,	dictionary,	or	associative	

array.	Two	implementations	are	developed,	one	that	uses	an	ArrayList	and	the	other	that	uses	a	

hash	table.	A	large	part	of	the	chapter	is	devoted	to	this	latter	implementation	and	the	important	

concept	of	hashing,	which	provides	a	very	efficient	implementation	of	a	Map.	The	“Variations”	

section	discusses	a	map-based	hybrid	data	structure	plus	Java’s	support	for	hashing.

Chapter 9 introduces	The	Priority Queue ADT,	which	is	closely	related	to	the	Queue	but	with	

a	different	accessing	protocol.	This	short	chapter	does	present	a	sorted	array-based	implementa-

tion,	but	most	of	the	chapter	focuses	on	a	clever,	interesting,	and	very	efficient	implementation	

called	a	Heap.

Chapter 10 covers	The Graph ADT, including	implementation	approaches	and	several	

important	graph-related	algorithms	(depth-first	search,	breadth-first	search,	path	existence,	

shortest	paths,	and	connected	components).	The	graph	algorithms	make	use	of	stacks,	queues,	

and	priority	queues,	thus	both	reinforcing	earlier	material	and	demonstrating	the	general	us-

ability	of	these	structures.

http://www.ebook3000.org

Preface ix

Chapter 11 presents/reviews	a	number	of	Sorting and Searching Algorithms.	The	sorting	

algorithms	that	are	illustrated,	implemented,	and	compared	include	straight	selection	sort,	two	

versions	of	bubble	sort,	insertion	sort,	quick	sort,	heap	sort,	and	merge	sort.	The	sorting	algo-

rithms	are	compared	using	efficiency	analysis.	The	discussion	of	algorithm	analysis	continues	in	

the	context	of	searching.	Previously	presented	searching	algorithms	are	reviewed	and	new	ones	

are	described.

Organization

Chapter Goals Sets	of	knowledge	and	skill	goals	are	presented	at	the	beginning	of	each	chapter	

to	help	the	students	assess	what	they	have	learned.

Sample Programs Numerous	sample	programs	and	program	segments	illustrate	the	abstract	

concepts	throughout	the	text.

Feature Sections Throughout	the	text	these	short	sections	highlight	topics	that	are	not	directly	

part	of	the	flow	of	material	but	nevertheless	are	related	and	important.

Boxed Notes These	small	boxes	of	information	scattered	throughout	the	text	highlight,	supple-

ment,	and	reinforce	the	text	material,	perhaps	from	a	slightly	different	point	of	view.

Chapter Summaries Each	chapter	concludes	with	a	summary	section	that	reviews	the	most	im-

portant	topics	of	the	chapter	and	ties	together	related	topics.	Some	chapter	summaries	include	a	

UML	diagram	of	the	major	interfaces	and	classes	developed	within	the	chapter.

Appendices The	appendices	summarize	the	Java	reserved	word	set,	operator	precedence,	primitive	

data	types,	the	ASCII	subset	of	Unicode,	and	provide	a	glossary	of	important	terms	used	in	the	text.

Website	 http://go.jblearning.com/oods4e

This	website	provides	access	to	the	text’s	source	code	files	for	each	chapter.	Additionally,	regis-

tered	instructors	are	able	to	access	selected	answers	to	the	text’s	exercises,	a	test	item	file,	and	

presentation	slides.	Please	contact	the	authors	if	you	have	material	related	to	the	text	that	you	

would	like	to	share	with	others.

http://go.jblearning.com/oods4e

x Preface

Acknowledgments

We	would	like	to	thank	the	following	people	who	took	the	time	to	review	this	text:	Mark	

Llewellyn	at	the	University	of	Central	Florida,	Chenglie	Hu	at	Carroll	College,	Val	Tannen	

at	the	University	of	Pennsylvania,	Chris	Dovolis	at	the	University	of	Minnesota,	Mike	Coe	at	

Plano	Senior	High	School,	Mikel	Petty	at	University	of	Alabama	in	Huntsville,	Gene	Sheppard	

at	Georgia	Perimeter	College,	Noni	Bohonak	at	the	University	of	South	Carolina–Lancaster,	

Jose	Cordova	at	the	University	of	Louisiana–Monroe,	Judy	Gurka	at	the	Metropolitan	State	

College	of	Denver,	Mikhail	Brikman	at	Salem	State	University,	Amitava	Karmaker	at	University	

of	Wisconsin–Stout,	Guifeng	Shao	at	Tennessee	State	University,	Urska	Cvek	at	Louisiana	State	

University	at	Shreveport,	Philip	C.	Doughty	Jr.	at	Northern	Virginia	Community	College,	Jeff	

Kimball	at	Southwest	Baptist	University,	Jeremy	T.	Lanman	at	Nova	Southeastern	University,	

Rao	Li	at	University	of	South	Carolina	Aiken,	Larry	Thomas	at	University	of	Toledo,	and	Karen	

Works	at	Westfield	State	University.	A	special	thanks	to	Christine	Shannon	at	Centre	College,	to	

Phil	LaMastra	at	Fairfield	University,	to	Allan	Gottlieb	of	New	York	University,	and	to	J.	William	

Cupp	at	Indiana	Wesleyan	University	for	specific	comments	leading	to	improvements	in	the	

text.	A	personal	thanks	to	Kristen	Obermyer,	Tara	Srihara,	Sean	Wilson,	Christopher	Lezny,	and	

Naga	Lakshmi,	all	of	Villanova	University,	plus	Kathy,	Tom,	and	Julie	Joyce	for	all	of	their	help,	

support,	and	proofreading	expertise.

A	virtual	bouquet	of	roses	to	the	editorial	and	production	teams	who	contributed	so	much,	

especially	Laura	Pagluica,	Taylor	Ferracane,	Amy	Rose,	and	Palaniappan	Meyyappan.

ND

DJ

CW

http://www.ebook3000.org

©
 Ake13bk/Shutterstock

1	 Getting	Organized	 1
1.1 Classes, Objects, and Applications 2

Classes	 2

The	Unified	Method	 7

Objects	 8

Applications	 10

1.2 Organizing Classes 12

Inheritance	 12

Packages	 19

1.3 Exceptional Situations 22

Handling	Exceptional	Situations	 22

Exceptions	and	Classes:	An	Example	 23

1.4 Data Structures 27

Implementation-Dependent	Structures	 28

Implementation-Independent	Structures	 29

What	Is	a	Data	Structure?	 31

1.5 Basic Structuring Mechanisms 32

Memory	 32

References	 34

Arrays	 38

1.6 Comparing Algorithms: Order of Growth Analysis 43

Measuring	an	Algorithm’s	Time	Efficiency	 44

Complexity	Cases	 45

Size	of	Input	 46

Comparing	Algorithms	 47

Order	of	Growth	 49

Contents

xii Contents

Selection	Sort	 50

Common	Orders	of	Growth	 53

Summary 54

Exercises 55

2	 The	Stack	ADT	 67
2.1 Abstraction 68

Information	Hiding	 68

Data	Abstraction	 69

Data	Levels	 70

Preconditions	and	Postconditions	 71

Java	Interfaces	 72

Interface-Based	Polymorphism	 76

2.2 The Stack 78

Operations	on	Stacks	 79

Using	Stacks	 79

2.3 Collection Elements 81

Generally	Usable	Collections	 81

2.4 The Stack Interface 84

Exceptional	Situations	 85

The	Interface	 88

Example	Use	 89

2.5 Array-Based Stack Implementations 90

The	ArrayBoundedStack	Class	 91

Definitions	of	Stack	Operations	 93

The	ArrayListStack	Class	 99

2.6 Application: Balanced Expressions 101

The	Balanced	Class	 102

The	Application	 107

The	Software	Architecture	 111

2.7 Introduction to Linked Lists 111

Arrays	Versus	Linked	Lists	 111

The	LLNode	Class	 113

Operations	on	Linked	Lists	 115

2.8 A Link-Based Stack 121

The	LinkedStack	Class	 122

The	push	Operation	 124

The	pop	Operation	 127

The	Other	Stack	Operations	 129

Comparing	Stack	Implementations	 131

2.9 Application: Postfix Expression Evaluator 132

Discussion	 132

Evaluating	Postfix	Expressions	 133

http://www.ebook3000.org

Contents xiii

Postfix	Expression	Evaluation	Algorithm	 134

Error	Processing	 136

The	PostFixEvaluator	Class	 137

The	PFixCLI	Class	 139

2.10 Stack Variations 142

Revisiting	Our	Stack	ADT	 142

The	Java	Stack	Class	and	the	Collections	Framework	 143

Summary 145

Exercises 147

3	 Recursion	 161
3.1 Recursive Definitions, Algorithms, and Programs 162

Recursive	Definitions	 162

Recursive	Algorithms	 163

Recursive	Programs	 166

Iterative	Solution	for	Factorial	 167

3.2 The Three Questions 167

Verifying	Recursive	Algorithms	 168

Determining	Input	Constraints	 169

Writing	Recursive	Methods	 169

Debugging	Recursive	Methods	 170

3.3 Recursive Processing of Arrays 170

Binary	Search	 170

3.4 Recursive Processing of Linked Lists 174

Recursive	Nature	of	Linked	Lists	 175

Traversing	a	Linked	List	 175

Transforming	a	Linked	List	 178

3.5 Towers 182

The	Algorithm	 182

The	Method	 184

The	Program	 186

3.6 Fractals 186

A	T-Square	Fractal	 187

Variations	 190

3.7 Removing Recursion 191

How	Recursion	Works	 191

Tail	Call	Elimination	 195

Direct	Use	of	a	Stack	 196

3.8 When to Use a Recursive Solution 197

Recursion	Overhead	 198

Inefficient	Algorithms	 198

Clarity	 200

xiv Contents

Summary 202

Exercises 202

4	 The	Queue	ADT	 217
4.1 The Queue 218

Operations	on	Queues	 219

Using	Queues	 219

4.2 The Queue Interface 220

Example	Use	 222

4.3 Array-Based Queue Implementations 223

The	ArrayBoundedQueue	Class	 223

The	ArrayUnboundedQueue	Class	 230

4.4 An Interactive Test Driver 234

The	General	Approach	 234

A	Test	Driver	for	the	ArrayBoundedQueue	Class	 235

Using	the	Test	Driver	 235

4.5 Link-Based Queue Implementations 237

The	Enqueue	Operation	 238

The	Dequeue	Operation	 239

A	Circular	Linked	Queue	Design	 241

Comparing	Queue	Implementations	 242

4.6 Application: Palindromes 244

The	Palindrome	Class	 244

The	Applications	 246

4.7 Queue Variations 248

Exceptional	Situations	 248

The	GlassQueue	 248

The	Double-Ended	Queue	 251

Doubly	Linked	Lists	 252

The	Java	Library	Collection	Framework	Queue/Deque	 255

4.8 Application: Average Waiting Time 257

Problem	Discussion	and	Example	 258

The	Customer	Class	 259

The	Simulation	 262

Testing	Considerations	 268

4.9 Concurrency, Interference, and Synchronization 268

The	Counter	Class	 270

Java	Threads	 271

Interference	 274

Synchronization	 275

A	Synchronized	Queue	 277

Concurrency	and	the	Java	Library	Collection	Classes	 282

http://www.ebook3000.org

Contents xv

Summary 283

Exercises 284

5	 The	Collection	ADT	 297
5.1 The Collection Interface 298

Assumptions	for	Our	Collections	 299

The	Interface	 299

5.2 Array-Based Collection Implementation 301

5.3 Application: Vocabulary Density 305

5.4 Comparing Objects Revisited 308

The	equals	Method	 308

The	Comparable	Interface	 314

5.5 Sorted Array-Based Collection Implementation 315

Comparable	Elements	 316

The	Implementation	 317

Implementing	ADTs	“by	Copy”	or	“by	Reference”	 319

Sample	Application	 323

5.6 Link-Based Collection Implementation 325

The	Internal	Representation	 325

The	Operations	 326

Comparing	Collection	Implementations	 329

5.7 Collection Variations 330

The	Java	Collections	Framework	 330

The	Bag	ADT	 331

The	Set	ADT	 333

Summary 336

Exercises 337

6	 The	List	ADT	 345
6.1 The List Interface 346

Iteration	 346

Assumptions	for	Our	Lists	 348

The	Interface	 348

6.2 List	Implementations	 350
Array-Based	Implementation	 350

Link-Based	Implementation	 355

6.3 Applications:	Card	Deck	and	Games	 361
The	Card	Class	 361

The	CardDeck	Class	 363

Application:	Arranging	a	Card	Hand	 366

Application:	Higher	or	Lower?	 369

Application:	How	Rare	Is	a	Pair?	 370

xvi Contents

6.4 Sorted	Array-Based	List	Implementation	 373
The	Insertion	Sort	 374

Unsupported	Operations	 375

Comparator	Interface	 376

Constructors	 377

An	Example	 378

6.5 List	Variations	 380
Java	Library	Lists	 380

Linked	List	Variations	 381

A	Linked	List	as	an	Array	of	Nodes	 381

6.6 Application:	Large	Integers	 386
Large	Integers	 386

The	Internal	Representation	 387

The	LargeIntList	class	 388

The	LargeInt	Class	 393

Addition	and	Subtraction	 395

The	LargeIntCLI	Program	 404

Summary 408

Exercises 410

7	 The	Binary	Search	Tree	ADT	 421
7.1 Trees 423

Tree	Traversals	 426

7.2 Binary Search Trees 429

Binary	Trees	 429

Binary	Search	Trees	 431

Binary	Tree	Traversals	 433

7.3 The Binary Search Tree Interface 435

The	Interface	 436

7.4 The Implementation Level: Basics 439

7.5 Iterative Versus Recursive Method Implementations 443

Recursive	Approach	to	the	size	Method	 444

Iterative	Approach	to	the	size	Method	 446

Recursion	or	Iteration?	 448

7.6 The Implementation Level: Remaining Observers 448

The	contains	and	get	Operations	 449

The	Traversals	 452

7.7 The Implementation Level: Transformers 455

The	add	Operation	 455

The	remove	Operation	 460

7.8 Binary Search Tree Performance 466

Text	Analysis	Experiment	Revisited	 466

Insertion	Order	and	Tree	Shape	 468

http://www.ebook3000.org

Contents xvii

Balancing	a	Binary	Search	Tree	 469

7.9 Application: Word Frequency Counter 471

The	WordFreq	Class	 472

The	Application	 473

7.10 Tree Variations 479

Application-Specific	Variations	 479

Balanced	Search	Trees	 482

Summary 485

Exercises 487

8	 The	Map	ADT	 499
8.1 The Map Interface 501

8.2 Map Implementations 506

Unsorted	Array	 506

Sorted	Array	 507

Unsorted	Linked	List	 507

Sorted	Linked	List	 508

Binary	Search	Tree	 508

An	ArrayList-Based	Implementation	 508

8.3 Application: String-to-String Map 512

8.4 Hashing 516

Collisions	 518

8.5 Hash Functions 524

Array	Size	 524

The	Hash	Function	 525

Java’s	Support	for	Hashing	 529

Complexity	 530

8.6 A Hash-Based Map 530

The	Implementation	 531

Using	the	HMap	class	 538

8.7 Map Variations 539

A	Hybrid	Structure	 540

Java	Support	for	Maps	 542

Summary 542

Exercises 543

9	 The	Priority	Queue	ADT	 551
9.1 The Priority Queue Interface 552

Using	Priority	Queues	 552

The	Interface	 553

9.2 Priority Queue Implementations 554

Unsorted	Array	 554

xviii Contents

Sorted	Array	 554

Sorted	Linked	List	 556

Binary	Search	Tree	 556

9.3 The Heap 556

9.4 The Heap Implementation 562

A	Nonlinked	Representation	of	Binary	Trees	 562

Implementing	a	Heap	 564

The	enqueue	Method	 567

The	dequeue	Method	 569

A	Sample	Use	 574

Heaps	Versus	Other	Representations	of	Priority	Queues	 575

Summary 576

Exercises 576

10	 The	Graph	ADT	 583
10.1 Introduction to Graphs 584

10.2 The Graph Interface 588

10.3 Implementations of Graphs 591

Array-Based	Implementation	 591

Linked	Implementation	 596

10.4 Application: Graph Traversals 597

Depth-First	Searching	 598

Breadth-First	Searching	 602

10.5 Application: The Single-Source Shortest-Paths Problem 605

Summary 611

Exercises 612

11	 Sorting	and	Searching	Algorithms	 621
11.1 Sorting 622

A	Test	Harness	 623

11.2 Simple Sorts 625

Selection	Sort	 625

Bubble	Sort	 631

Insertion	Sort	 635

11.3 O(N log
2
N) Sorts 638

Merge	Sort	 639

Quick	Sort	 646

Heap	Sort	 652

11.4 More Sorting Considerations 658

Testing	 658

Efficiency	 658

Objects	and	References	 660

http://www.ebook3000.org

Contents xix

Comparing	Objects	 661

Stability	 661

11.5 Searching 662

Sequential	Searching	 663

High-Probability	Ordering	 663

Sorted	Collections	 664

Hashing	 665

Summary 666

Exercises 667

Appendix A: Java Reserved Words 673

Appendix B: Operator Precedence 674

Appendix C: Primitive Data Types 675

Appendix D: ASCII Subset of Unicode 676

Glossary 677

Index 683

http://www.ebook3000.org

CHAPTER

Getting	Organized

Knowledge	Goals
You should be able to

 � describe some benefits of object-oriented programming

 � describe the genesis of the Unified Method

 � explain the relationships among classes, objects, and applications

 � explain how method calls are bound to method implementations with respect to inheritance

 � describe, at an abstract level, the following structures: array, linked list, stack, queue, list, tree, map, and graph

 � identify which structures are implementation dependent and which are implementation independent

 � describe the difference between direct addressing and indirect addressing

 � explain the subtle ramifications of using references/pointers

 � explain the use of O notation to describe the amount of work done by an algorithm

 � describe the sequential search, binary search, and selection sort algorithms

Skill	Goals
You should be able to

 � interpret a basic UML class diagram

 � design and implement a Java class

 � create a Java application that uses the Java class

 � use packages to organize Java compilation units

 � create a Java exception class

 � throw Java exceptions from within a class and catch them within an application that uses the class

 � predict the output of short segments of Java code that exhibit aliasing

 � declare, initialize, and use one- and two-dimensional arrays in Java, including both arrays of a primitive type and arrays of objects

 � given an algorithm, identify an appropriate size representation and determine its order of growth

 � given a section of code determine its order of growth

1

©
 Ake13bk/Shutterstock

2 Chapter	1 Getting	Organized

B
efore	embarking	on	any	new	project,	 it	 is	a	good	idea	to	prepare	carefully—to	“get	

organized.”	In	this	�irst	chapter	that	is	exactly	what	we	do.	A	careful	study	of	the	topics	

of	this	chapter	will	prepare	us	for	the	material	on	data	structures	and	algorithms,	using	

the	object-oriented	approach,	covered	in	the	remainder	of	the	book.

1.1	 Classes,	Objects,	and	Applications
Software	design	is	an	interesting,	challenging,	and	rewarding	task.	As	a	beginning	student	

of	computer	science,	you	wrote	programs	that	solved	relatively	simple	problems.	Much	

of	your	effort	went	into	learning	the	syntax	of	a	programming	language	such	as	Java:	the	

language’s	reserved	words,	its	data	types,	its	constructs	for	selection	and	looping,	and	its	

input/output	mechanisms.

As	your	programs	and	the	problems	they	solve	become	more	complex	it	is	important	

to	follow	a	software	design	approach	that	modularizes	your	solutions—breaks	them	into	

coherent	manageable	subunits.	Software	design	was	originally	driven	by	an	emphasis	on	

actions.	Programs	were	modularized	by	breaking	them	into	subprograms	or	procedures/

functions.	A	subprogram	performs	some	calculations	and	returns	information	to	the	call-

ing	program,	but	it	does	not	“remember”	anything.	In	the	late	1960s,	researchers	argued	

that	 this	 approach	was	 too	 limiting	 and	did	not	 allow	us	 to	 successfully	 represent	 the	

constructs	needed	to	build	complex	systems.

Two	Norwegians,	Kristen	Nygaard	and	Ole-Johan	Dahl,	 created	Simula	67	 in	1967.	

It	was	 the	 �irst	 language	 to	support	object-oriented	programming.	Object-oriented	 lan-

guages	promote	 the	object	as	 the	prime	modularization	mechanism.	Objects	 represent	

both	information	and	behavior	and	can	“remember”	internal	information	from	one	use	to	

the	next.	This	crucial	difference	allows	them	to	be	used	in	many	versatile	ways.	In	2001,	

Nygaard	and	Dahl	received	the	Turing	Award,	sometimes	referred	to	as	the	“Nobel	Prize	

of	Computing,”	for	their	work.

The	capability	of	objects	to	represent	both	information	(the	objects	have	attributes)	

and	behavior	(the	objects	have	responsibilities)	allows	them	to	be	used	to	represent	“real-

world”	entities	as	varied	as	bank	accounts,	genomes,	and	hobbits.	The	self-contained	na-

ture	of	objects	makes	them	easy	to	implement,	modify,	and	test	for	correctness.

Object	orientation	is	centered	on	classes	and	objects.	Objects	are	the	basic	run-time	

entities	used	by	applications.	An	object	is	an	instantiation	of	a	class;	alternatively,	a	class	

de�ines	the	structure	of	its	objects.	In	this	section	we	review	these	object-oriented	pro-

gramming	constructs	that	we	use	to	organize	our	programs.

Classes
A	class	de�ines	the	structure	of	an	object	or	a	set	of	objects.	A	class	de�inition	includes	

variables	(data)	and	methods	(actions)	that	determine	the	behavior	of	an	object.	The	fol-

lowing	Java	code	de�ines	a	Date	class	that	can	be	used	to	create	and	manipulate	Date	
objects—for	example,	within	a	school	course-scheduling	application.	The	Date	class	can	
be	used	to	create	Date	objects	and	to	learn	about	the	year,	month,	or	day	of	any	particular	

http://www.ebook3000.org

31.1	 Classes,	Objects,	and	Applications

Date	 object.1
	
The	 class	 also	 provides	

methods	 that	return	 the	Lilian	Day	Num-

ber	of	the	date	(the	code	details	have	been	

omitted—see	the	feature	section	on	Lilian	

Day	Numbers	 for	more	 information)	 and	

return	a	string	representation	of	the	date.

//--
// Date.java by Dale/Joyce/Weems Chapter 1
//
// Defines date objects with year, month, and day attributes.
//--
package ch01.dates;
public class Date
{
 protected int year, month, day;
 public static final int MINYEAR = 1583;

// Constructor
 public Date(int newMonth, int newDay, int newYear)
 {
 month = newMonth; day = newDay; year = newYear;
 }

// Observers
 public int getYear() { return year; }
 public int getMonth() { return month; }
 public int getDay(){ return day; }

 public int lilian()
 {

// Returns the Lilian Day Number of this date.
// Algorithm goes here. Code is included with the program files.
// See Lilian Day Numbers feature section for details.

 }

 @Override2

 public String toString()

1 The Java library includes a Date class, java.util.Date. However, the familiar properties of dates make them a natural
example to use in explaining object-oriented concepts. Here we ignore the existence of the library class, as if we must design
our own Date class.

2 The purpose of @Override is discussed in Section 1.2 “Organizing Classes.”

Authors’	Convention

Java-reserved	words	(when	used	as	such),	user-defined	
identifiers,	class	and	file	names,	and	so	on,	appear	in	
this font	throughout	the	entire	text.

4 Chapter	1 Getting	Organized

// Returns this date as a String.
 {
 return(month + "/" + day + "/" + year);
 }
}

The	Date	 class	demonstrates	 two	kinds	of	variables:	 instance	variables	and	class	vari-
ables.	The	instance	variables	of	this	class	are	year,	month,	and	day	declared	as

protected int year, month, day;

Their	values	vary	for	each	“instance”	of	an	object	of	the	class.	Instance	variables	provide	

the	internal	representation	of	an	object’s	attributes.

The	variable	MINYEAR	is	declared	as

public static final int MINYEAR = 1583;

MINYEAR	 is	de�ined	as	being	static,	and	thus	it	 is	a	class	variable.	It	 is	associated	di-
rectly	with	the	Date	class,	instead	of	with	objects	of	the	class.	A	single	copy	of	a	class	vari-
able	is	maintained	for	all	objects	of	the	class.

Remember	that	the	final	modi�ier	states	that	a	variable	is	in	its	�inal	form	and	can-
not	be	modi�ied;	thus	MINYEAR	 is	a	constant.	By	convention,	we	use	only	capital	letters	
when	naming	constants.	It	is	standard	procedure	to	declare	constants	as	class	variables.	

Because	the	value	of	the	variable	cannot	change,	there	is	no	need	to	force	every	object	of	a	

class	to	carry	around	its	own	version	of	the	value.	In	addition	to	holding	shared	constants,	

class	variables	can	be	used	to	maintain	information	that	is	common	to	an	entire	class.	For	

example,	a	BankAccount	class	may	have	a	class	variable	that	holds	the	number	of	current	
accounts.

In	the	Date	class	example,	the	MINYEAR	con-
stant	represents	the	�irst	full	year	that	the	widely	

used	Gregorian	calendar	was	 in	effect.	The	 idea	

here	 is	 that	 programmers	 should	 not	 use	 the	

class	 to	 represent	 dates	 that	 predate	 that	 year.	

We	look	at	ways	to	enforce	this	rule	in	Section	1.3	

“Exceptional	Situations,”	where	we	discuss	han-

dling	exceptional	situations.

The	methods	of	 the	class	are	Date,	 	getYear,	getMonth,	getDay,	lilian,	 and	
toString.	Note	that	the	Date	method	has	the	same	name	as	the	class.	Recall	that	this	
means	it	is	a	special	type	of	method,	called	a	class		constructor.	Constructors	are	used	to	

create	new	instances	of	a	class—that	is,	to	instantiate	objects	of	a	class.	The	other	meth-

ods	are	classi�ied	as	observer	methods,	because	they	“observe”	and	return	information	

based	on	the	instance	variable	values.	Other	names	for	observer	methods	are	“accessor”	

methods	and	“getters,”	as	in	accessing	or	getting	information.	Methods	that	simply	return	

the	value	of	an	instance	variable,	such	as	getYear()	in	our	Date	class,	are	very	common	
and	always	follow	the	same	code	pattern	consisting	of	a	single	return	statement.	For	this	
reason	we	will	format	such	methods	as	a	single	line	of	code.	In	addition	to	constructors	

Authors’	Convention

We	highlight	important	terms	that	might	be	unfamiliar	to	
the	student	in	green,	the	first	time	they	are	featured,	to	
indicate	that	their	definition	can	be	found	in	the	glossary	
in	Appendix	E.

http://www.ebook3000.org

51.1	 Classes,	Objects,	and	Applications

and	observers,	there	is	another	general	category	of	method,	called	a	transformer.	As	you	

probably	recall,	transformers	change	the	object	in	some	way;	for	example,	a	method	that	

changes	the	year	of	a	Date	object	would	be	classi�ied	as	a	transformer.
You	have	undoubtedly	noticed	the	use	of	the	access	modi�iers	protected	and		public	

within	 the	Date	 class.	Let	us	review	the	purpose	and	use	of	access modi�iers.	This	dis-

cussion	assumes	you	recall	the	basic	ideas	behind	inheritance	and	packages.	Inheritance	

supports	the	extension	of	one	class,	called	the	superclass,	by	another	class,	called	the	sub-

class.	The	subclass	“inherits”	properties	(data	and	actions)	from	the	superclass.	We	say	that	

the	subclass	is	derived	from	the	superclass.	Packages	let	us	group	related	classes	together	

into	a	single	unit.	Inheritance	and	packages	are	both	discussed	more	extensively	in	the	next	

section.

Java	allows	a	wide	spectrum	of	access	control,	as	summarized	in	Table 1.1.	The	public	
access	modi�ier	used	with	the	methods	of	Date	makes	them	“publicly”	available;	any	code	
that	can	“see”	an	object	of	the	class	can	use	its	public	methods.	We	say	that	these	methods	

are	“exported”	from	the	class.	Additionally,	any	class	that	is	derived	from	the	Date	class	us-
ing	inheritance	inherits	its	public	methods	and	variables.

Public	access	sits	at	one	end	of	the	access	spectrum,	allowing	open	access.	At	the	other	

end	of	the	spectrum	is	private	access.	When	you	declare	a	class’s	variables	and	methods	as	

private,	they	can	be	used	only	inside	the	class	itself	and	are	not	inherited	by	subclasses.	
You	should	routinely	use	private	(or	protected)	access	within	your	classes	to	hide	their	

data.	You	do	not	want	the	data	values	to	be	changed	by	code	that	is	outside	the	class.	For	

example,	 if	 the	month	 instance	variable	 in	our	Date	class	was	declared	to	be	public,	
then	the	application	code	could	directly	set	the	value	of	a	Date	object’s	month	to	strange	
numbers	such	as	−12	or	27.

An	exception	to	this	guideline	of	hiding	data	within	a	class	is	shown	in	the	Date	ex-
ample.	Notice	that	the	MINYEAR	constant	is	publicly	accessible.	It	can	be	accessed	directly	
by	the	application	code.	For	example,	an	application	could	include	the	statement

if (myYear < Date.MINYEAR) ...

Because	MINYEAR	is	a	�inal	constant,	its	value	cannot	be	changed	by	the	application.	Thus,	
even	though	it	is	publicly	accessible,	no	other	code	can	change	its	value.	It	is	not	necessary	

Table 1.1 Java Access Control Modifiers

Access Is Allowed

Within
the Class

Within
the Package

Within
Subclasses

Everywhere

public X X X X
protected X X X
package X X
private X

6 Chapter	1 Getting	Organized

to	hide	 it.	The	application	code	above	also	shows	how	to	access	a	public	class	variable	

from	outside	 the	class.	Because	MINYEAR	 is	a	class	variable,	 it	 is	accessed	through	the	
class	name,	Date,	rather	than	through	an	object	of	the	class.

Private	 access	 affords	 the	 strongest	 protection.	 Access	 is	 allowed	 only	 within	 the	

class.	However,	if	you	plan	to	extend	your	classes	using	inheritance,	you	may	want	to	use	

protected	access	instead.

The	 protected	 access	 modi�ier	 used	 in	
Date	provides	visibility	similar	to	private	access,	
only	slightly	less	rigid.	It	“protects”	its	data	from	

outside	access,	but	allows	the	data	to	be	accessed	

from	within	 its	 own	 package	or from	 any	 class	

derived	 from	 its	 class.	Therefore,	 the	methods	within	 the	Date	 class	 can	access	year,

month, and	day, and	if,	as	we	will	show	in	Section	1.2	“Organizing	Classes,”	the	Date	class	
is	extended,	the	methods	in	the	extended	class	can	also	access	those	variables.

The	remaining	type	of	access	is	called	package	access.	A	variable	or	method	of	a	class	

defaults	to	package	access	if	none	of	the	other	three	modi�iers	are	used.	Package	access	

means	that	the	variable	or	method	is	accessible	to	any	other	class	in	the	same	package.

1582 1582OCTOBER

SUN

31

17

24

MON

1

18

25

TUE

2

19

26

WED

3

20

27

THU

4

21

28

FRI

15

22

29

SAT

16

23

30

Coding	Convention

We	use	protected	access	extensively	for	instance	
	variables	within	our	classes	in	this	text.	

Lilian	Day	Numbers
Various approaches to numbering days have been proposed. Most choose a particular day in history
as day 1, and then number the actual sequence of days from that day forward with the numbers 2,
3, and so on. The Lilian Day Number (LDN) system uses October 15, 1582, as day 1, or LDN 1.

Our current calendar is called the Gregorian calendar. It was established in 1582 by Pope Greg-
ory XIII. At that time 10 days were dropped from the month of October, to make up for small errors
that had accumulated throughout the years. Thus, the day following October 4, 1582, in the Gre-
gorian calendar is October 15, 1582, also known as LDN 1 in the Lilian day numbering scheme. The
scheme is named after Aloysius Lilius, an advisor to Pope Gregory and one of the principal instigators
of the calendar reform.

Originally, Catholic European countries adopted the Gregorian calendar. Many Protestant na-
tions, such as England and its colonies, did not adopt the Gregorian calendar until 1752, at which

1582 1582OCTOBER

SUN

31

17

24

MON

1

18

25

TUE

2

19

26

WED

3

20

27

THU

4

21

28

FRI

15

22

29

SAT

16

23

30

Lilian	Day	Numbers
Various approaches to numbering days have been proposed. Most choose a particular day in history
as day 1, and then number the actual sequence of days from that day forward with the numbers 2,
3, and so on. The Lilian Day Number (LDN) system uses October 15, 1582, as day 1, or LDN 1.

Our current calendar is called the Gregorian calendar. It was established in 1582 by Pope Greg-
ory XIII. At that time 10 days were dropped from the month of October, to make up for small errors
that had accumulated throughout the years. Thus, the day following October 4, 1582, in the Gre-
gorian calendar is October 15, 1582, also known as LDN 1 in the Lilian day numbering scheme. The
scheme is named after Aloysius Lilius, an advisor to Pope Gregory and one of the principal instigators
of the calendar reform.

Originally, Catholic European countries adopted the Gregorian calendar. Many Protestant na-
tions, such as England and its colonies, did not adopt the Gregorian calendar until 1752, at which

http://www.ebook3000.org

71.1	 Classes,	Objects,	and	Applications

The	Unified	Method
The	object-oriented	approach	to	programming	is	based	on	implementing	models	of	real-

ity.	But	how	do	you	go	about	this?	Where	do	you	start?	How	do	you	proceed?	The	best	plan	

is	to	follow	an	organized	approach	called	a	methodology.

In	the	late	1980s,	many	people	proposed	object-oriented	methodologies.	By	the	mid-

1990s,	three	proposals	stood	out:	the	Object	Modeling	Technique,	the	Objectory	Process,	

and	the	Booch	Method.	Between	1994	and	1997,	the	primary	authors	of	these	proposals	

got	 together	 and	 consolidated	 their	 ideas.	 The	 resulting	methodology	was	dubbed	 the	

Uni�ied	Method.	It	is	now,	by	far,	the	most	popular	organized	approach	to	creating	object-

oriented	systems.

The	Uni�ied	Method	features	three	key	elements:

1. It	is	use-case	driven.	A	use-case	is	a	description	of	a	sequence	of	actions	performed	

by	a	user	within	the	system	to	accomplish	some	task.	The	term	“user”	here	should	be	

interpreted	in	a	broad	sense	and	could	represent	another	system.

2. It	is	architecture-centric.	The	word	“architecture”	refers	to	the	overall	structure	of	the	

target	system,	the	way	in	which	its	components	interact.

time they also “lost” 11 days. Today, most countries use the Gregorian calendar, at least for of�cial
international business. When comparing historical dates, one must be careful about which calendars
are being used.

In our Date class implementation, MINYEAR is 1583, representing the �rst full year during
which the Gregorian calendar was in operation. We assume that programmers will not use the
Date class to represent dates before that time, although this rule is not enforced by the class. This
assumption simpli�es calculation of day numbers, as we do not have to worry about the phantom
10 days of October 1582.

To calculate LDNs, one must understand how the Gregorian calendar works. Years are usually
365 days long. However, every year evenly divisible by 4 is a leap year, 366 days long. This aligns the
calendar closer to astronomical reality. To �ne-tune the adjustment, if a year is evenly divisible by
100, it is not a leap year but, if it is also evenly divisible by 400, it is a leap year. Thus 2000 was a
leap year, but 1900 was not.

Given a date, the lilian method of the Date class counts the number of days between that
date and the hypothetical date 1/1/0—that is, January 1 of the year 0. This count is made under the
assumption that the Gregorian reforms were in place during that entire time period. In other words,
it uses the rules described in the previous paragraph. Let us call this number the Relative Day Number
(RDN). To transform a given RDN to its corresponding LDN, we just need to subtract the RDN of
October 14, 1582, from it. For example, to calculate the LDN of July 4, 1776, the method �rst cal-
culates its RDN (648,856) and then subtracts from it the RDN of October 14, 1582 (578,100), giving
the result of 70,756.

Code for the lilian method is included with the program code �les.

time they also “lost” 11 days. Today, most countries use the Gregorian calendar, at least for of�cial
international business. When comparing historical dates, one must be careful about which calendars
are being used.

In our Date class implementation, MINYEAR is 1583, representing the �rst full year during
which the Gregorian calendar was in operation. We assume that programmers will not use the
Date class to represent dates before that time, although this rule is not enforced by the class. This
assumption simpli�es calculation of day numbers, as we do not have to worry about the phantom
10 days of October 1582.

To calculate LDNs, one must understand how the Gregorian calendar works. Years are usually
365 days long. However, every year evenly divisible by 4 is a leap year, 366 days long. This aligns the
calendar closer to astronomical reality. To �ne-tune the adjustment, if a year is evenly divisible by
100, it is not a leap year but, if it is also evenly divisible by 400, it is a leap year. Thus 2000 was a
leap year, but 1900 was not.

Given a date, the lilian method of the Date class counts the number of days between that
date and the hypothetical date 1/1/0—that is, January 1 of the year 0. This count is made under the
assumption that the Gregorian reforms were in place during that entire time period. In other words,
it uses the rules described in the previous paragraph. Let us call this number the Relative Day Number
(RDN). To transform a given RDN to its corresponding LDN, we just need to subtract the RDN of
October 14, 1582, from it. For example, to calculate the LDN of July 4, 1776, the method �rst cal-
culates its RDN (648,856) and then subtracts from it the RDN of October 14, 1582 (578,100), giving
the result of 70,756.

Code for the lilian method is included with the program code �les.

8 Chapter	1 Getting	Organized

3. It	is	iterative	and	incremental.	The	Uni�ied	Method	involves	a	series	of	development	

cycles,	with	each	one	building	upon	the	foundation	established	by	its	predecessors.

One	of	the	main	bene�its	of	the	Uni�ied	Method	is	improved	communication	among	the	

people	 involved	 in	 the	project.	 The	Uni�ied	Method	 includes	 a	 set	 of	 diagrams	 for	 this	

purpose,	called	the	Uni�ied Modeling Language (UML).
3
	
	
UML	diagrams	have	become	a	

de	facto	industry	standard	for	modeling	software.	They	are	used	to	specify,	visualize,	con-

struct,	and	document	the	components	of	a	software	system.	We	use	UML	class	diagrams

throughout	this	text	to	model	our	classes	and	their	interrelationships.

A	diagram	representing	the	Date	class	is	shown	in	Figure 1.1.	The	diagram	follows	

the	standard	UML	class	notation	approach.	The	name	of	the	class	appears	in	the	top	sec-

tion	of	the	diagram,	the	variables	(attributes)	appear	in	the	next	section,	and	the	meth-

ods	(operations)	appear	in	the	�inal	section.	The	diagram	includes	information	about	the	

nature	of	the	variables	and	method	parameters;	for	example,	we	can	see	at	a	glance	that	

year,	month,	and	day	are	all	of	type	int.	Note	that	the	variable	MINYEAR	is	underlined;	
this	indicates	that	it	is	a	class	variable	rather	than	an	instance	variable.	The	diagram	also	

indicates	the	visibility	or	protection	associated	with	each	part	of	the	class	(+	=	public,	#	
=	protected).

Objects
Objects	are	created	from	classes	at	run	time.	They	can	contain	and	manipulate	data.	Mul-

tiple	objects	can	be	created	from	the	same	class	de�inition.	Once	a	class	such	as	Date	has	
been	de�ined,	a	program	can	create	and	use	objects	of	that	class.	The	effect	is	similar	to	

expanding	the	language’s	set	of	standard	types	to	include	a	Date	type.	To	create	an	object	
in	Java	we	use	the	new	operator,	along	with	the	class	constructor,	as	follows:

Date myDate = new Date(6, 24, 1951);
Date yourDate = new Date(10, 11, 1953);
Date ourDate = new Date(6, 15, 1985);

Figure 1.1 UML class diagram for the Date class

Date
#year:int
#month:int
#day:int
+MINYEAR:int = 1583

+Date(newMonth:int,newDay:int,newYear:int)
+getYear():int
+getMonth():int
+getDay():int
+lilian():int
+toString():String

3 The official definition of the UML is maintained by the Object Management Group. Detailed information can be found at
http://www.uml.org/.

http://www.uml.org/
http://www.ebook3000.org

91.1	 Classes,	Objects,	and	Applications

We	say	that	the	variables	myDate,	yourDate,	and	ourDate	reference	“objects	of	the	class	
Date”	or	simply	“objects	of	type	Date.”	We	could	also	refer	to	them	as	“Date	objects.”

Figure 1.2	extends	our	previous	diagram	(shown	in	Figure	1.1)	to	show	the	relation-

ship	between	the	instantiated	Date	objects	and	the	Date	class.	As	you	can	see,	the	objects	
are	associated	with	the	class,	as	represented	by	arrows	from	the	objects	to	the	class	in	the	

diagram.	Notice	that	the	myDate,	yourDate,	and	ourDate	variables	are	not	objects,	but	
actually	hold	references	to	the	objects.	The	references	are	shown	by	the	arrows	from	the	

variable	boxes	to	the	objects.	In	reality,	references	are	memory	addresses.	The	memory	

address	of	the	instantiated	object	is	stored	in	the	memory	location	assigned	to	the	vari-

able.	If	no	object	has	been	instantiated	for	a	particular	variable,	then	its	memory	location	

holds	a	null	reference.
Methods	are	invoked	through	the	object	upon	which	they	are	to	act.	For	example,	to	

assign	the	return	value	of	the	getYear	method	of	the	ourDate	object	to	the	integer	vari-
able	theYear,	a	programmer	would	code

theYear = ourDate.getYear();

Recall	that	the	toString	method	is	invoked	in	a	special	way.	Just	as	Java	automatically	
changes	an	integer	value,	such	as	that	returned	by	getDay,	to	a	string	in	the	statement

System.out.println("The big day is " + ourDate.getDay());

it	automatically	changes	an	object,	such	as	ourDate,	to	a	string	in	the	statement

System.out.println("The party will be on " + ourDate);

The	output	from	these	statements	would	be

The	big	day	is	15

The	party	will	be	on	6/15/1985

Figure 1.2 Class diagram showing Date objects

Date

#year:int
#month:int
#day:int
+MINYEAR:int = 1583

yourDate

year: 1951
month: 6
day: 24

year: 1953
month: 10
day: 11

myDate

year: 1985
month: 6
day: 15

ourDate

+Date(newMonth:int,newDay:int,newYear:int)
+getYear():int
+getMonth():int
+getDay():int
+lilian():int
+toString():String

